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Abstract. The application of artificial intelligence in medicine is receiv-
ing increasing attention and research. One of the critical challenges faced
by doctors is detecting abnormalities in medical images. For this task,
doctors expect a model not only to identify whether an image is normal
or abnormal but also to accurately localize the areas of abnormalities.
Additionally, the model needs to perform well across various medical
imaging domains, even in fields with limited training data. Building mod-
els to address this issue typically requires large datasets and considerable
time, which increases costs. However, the development of vision-language
models, which can effectively handle zero-shot and few-shot problems,
presents a more optimal solution. In this article, we propose a Multi-
Level Adapters with Learnable Prompt model (MLA-LP). By adjusting
image characteristics through adapters, our model can better calibrate
centroids for medical datasets. And it automatically adjusts prompts to
enhance its ability to detect abnormalities in medical images. Our ex-
periments on medical anomaly detection benchmarks demonstrate that
our method significantly surpasses current state-of-the-art models. In
few-shot settings, our model achieves an average AUC improvement of
0.28% for anomaly classification and 0.08% for anomaly segmentation.
In zero-shot settings, it achieves an average AUC improvement of 0.39%
for anomaly classification.

Keywords: Anomaly detection · Vision-Languages Model · Medical im-
age· Zero-shot learning · Few-shot learning.

1 Introduction
The medical anomaly detection (AD) problem involves determining whether

an image is normal or abnormal and identifying abnormal areas on the medical
image. This helps doctors quickly screen patients, reduces the risks in decision-
making, and improves the efficiency of medical professionals.

Medical imaging varies widely, creating a need for a model that works well
with different medical data sets. Some methods achieve a good understanding
of the problem and perform almost accurately on certain tasks. However, these
models require a large amount of data, increasing the cost and time to build
them. Zero- or few-shot learning methods address this issue and also achieve
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good results. With only a small amount of training data needed, these approaches
offer new solutions for detecting abnormalities in medical images.

Recently, the pre-trained visual-language models (VLMs) have been increas-
ingly improved on a larger scale. This greatly supports the problem of anomaly
detection. One of the prominent models is CLIP [19], with the capability to map
natural images and raw texts into a unified representational space, which can
be easily applied to a variety of downstream tasks. This provides good support
for many tasks, including anomaly detection. Several studies by WinCLIP [13]
or April-GAN [5] have proposed different approaches based on the general idea
of adding adapter layers to map image features to the joint embedding space to
the text features, facilitating their comparison. And it has also produced positive
results. In medicine, MVFA [10]’s proposal is also based on the above idea and
has also achieved very good results for detecting abnormalities in medicine.

In this paper, we aim to develop a model for medical anomaly detection that
is adaptable to zero-shot and few-shot learning methods. However, we face two
main challenges when using the CLIP [19] model with adjustments. First, the
visual encoder in CLIP [19] primarily represents semantic features of images,
while our model needs to detect irregularities across diverse semantic contexts.
Additionally, since CLIP [19] is trained only on natural images, applying it to
medical images presents a challenge. Second, current anomaly detection methods
often rely on additional information such as text data and pre-defined sentence
templates, which reduces the model’s flexibility in adapting to different datasets
from various body parts. This is especially problematic when aiming for effective
performance in few-shot and zero-shot learning scenarios.

To address these challenges, we propose a Multi-Level Adapters with Learn-
able Prompt model (MLA-LP). This model uses multi-level adaptation to align
intermediate layer features from CLIP [19], allowing for adaptability at multiple
levels and improving performance in medical anomaly detection. At the same
time, we use learnable prompts to avoid static text templates, increasing the
flexibility of the textual component in the anomaly detection task. Our goal
is to recalibrate the model to classify images as ‘normal’ or ‘abnormal’ and to
segment abnormalities within the images.

We experiment with MLA-PL using benchmark datasets for medical anomaly
detection (AD). This includes five datasets with distinct medical modalities and
anatomical regions: ChestXray [20], HIS [3], OCT17 [14], BrainMRI [1, 2, 17],
LiverCT [4, 15], and RESC [9]. We compare the results with those of current
state-of-the-art models [10]. Our approach shows superior performance across
multiple datasets in both zero-shot and few-shot learning scenarios.

2 Related Works

Medical Anomaly Detection. In the application of Vision-Language Mod-
els to specific tasks in general domains and medical fields in particular, there
are two prominent approaches. The first involves developing large-scale mod-
els, such as MedCLIP [21] and GLoRIA [12], and utilizing their pretrained en-
coders for downstream tasks like classification or segmentation,. . . The second
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approach, which aligns with our work, has been explored in studies such as
WinCLIP [13], April-GAN [5], and MVFA-AD [10], the current state-of-the-art
for medical anomaly detection. These methods use CLIP [19] as the backbone,
incorporating task-specific adaptations to directly address medical anomaly de-
tection. This approach leverages CLIP’s capacity for multimodal alignment while
introducing enhancements tailored to the unique challenges of medical imaging.

Vision-Language Model. CLIP [19] (Contrastive Language-Image Pre-
training) has shown strong potential in anomaly detection [5, 13, 25], including
medical anomaly detection [10, 23, 25], thanks to its training on over 400 mil-
lion image-text pairs, enabling effective visual-textual alignment. This capability
aids in detecting rare pathologies with minimal labeled data, addressing chal-
lenges such as dataset scarcity and variability in medical imaging. Huang et
al. [10] introduced multi-level adaptation to the image encoder of CLIP [19] by
freezing both the image and text encoders while training lightweight adapters.
These adapters successfully adapt medical features from medical images, achiev-
ing strong performance in specialized tasks. Zhou et al. [25] enhanced CLIP by
adding DPAM layers to the image encoder and applying textual prompt tuning
to the text encoder, enabling prompt learning in both textual and local visual
spaces. This approach was inspired by the prompt tuning methodology proposed
in Zhou et al. [24]. Similarly, Zhang et al. [23] improved the text encoder by in-
corporating learnable prompts and integrating multi-task anomaly synthesis tai-
lored specifically for medical anomaly detection. Inspired by Huang et al.’s [10]
approach of adding multi-level adaptation to the image encoder of CLIP and the
use of learnable prompts tailored for specific tasks, as demonstrated in the works
of Zhou et al. [25] and Zhang et al. [23], we aim to apply these techniques to
develop an architecture for the task of Abnormality Detection in Medical Images
based on a Visual-Language Model.

3 Methods
In this section, we detail our MLA-PL method, starting with the use of

learnable prompts in text encoding, followed by multi-level adaptation in image
encoding to capture detailed medical features. We then describe the integration
of image and text features for improved abnormality detection.

3.1 Learnable Prompt
In medical anomaly detection, leveraging learnable prompts in text-based

encoding provides a powerful mechanism for improving system efficiency. Text
inherently carries rich semantic information and offers an abstract, flexible means
to represent abnormalities in medical imaging. This enables the system to dy-
namically adapt to various contexts, enhancing feature extraction and improving
the performance of classification and segmentation tasks.

The main idea behind learnable prompts is to model a prompt’s context using
a set of learnable vectors, which are optimized by minimizing the classification
loss and segmentation loss. Instead of relying solely on handcrafted templates,
learnable prompts allow the model to automatically adjust and generalize across
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Fig. 1: The overview of our proposed MLA-LP model.

diverse medical imaging scenarios, capturing nuanced features of normal and
abnormal cases effectively.

The commonly used text prompt templates in CLIP [19], such as ‘A photo of a
[CLS],’ primarily focus on describing the semantics of the image. Therefore, when
used for anomaly detection (AD), it is necessary to include information about
‘normal’ or ‘abnormal,’ for example, ‘A photo of a [CLS] with abnormal.’ How-
ever, this also requires building many sentence patterns and information about
CLS like brain, chest,etc., which poses additional challenges for this anomaly
detection problem. Therefore, we use prompt learning instead of the above tra-
ditional method, which will generalize better to medical images to obtain more
comprehensive abnormal semantics. Going into more detail, we use templates
as:

p = [V1][V2] · · · [VM ][CLS] (1)

Where Vi (i ∈ [1, . . . ,M ]) represents the learned embeddings, M is the number
of learnable tokens. And the class token (CLS) is the fixed embeddings, There-
fore, we use medical terms to describe the two normal and abnormal cases for
[CLS]. For example, words like [healthy], [asymptomatic] used for normal cases,
and [disease], [pathological] for abnormal cases. In our study, we use a set of
sentences Pn = {pn1 , pn2 , . . . , pnI

} for normal cases and Pa = {pa1 , pa2 , . . . , paE
}

for abnormal cases. Therein, I, E are the number of prompts of normal and
abnormal.

The text encoder of CLIP is denoted as Etext(.). For each sentence in Pn, Pa,
it pass through Etext(.). From there, we get Fn = {fn1

, fn2
, . . . , fnI

} and Fa =
{fa1

, fa2
, . . . , faE

}. For each feature fni
, faj

∈ RC , where C signifies the dimen-
sion of prompt feature.
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Finally, we perform the mean operation on each Fn and Fa to obtain their
respective aggregated features:

fn =
1

I

I∑
i=1

fni
, fa =

1

E

E∑
i=1

fai
(2)

Combining these results from Equation 2, the final text feature Ftext is repre-
sented as:

Ftext = {fn, fa} =

(
fT
n

fT
a

)
(3)

Since fn and fa are both feature embeddings in the space RC , will be a
matrix of size 2 × C. The text feature will be used for integration with image
features.

By integrating these textual features with multi-level image adaptations, de-
tailed medical features are captured and fused, leading to superior performance
in detecting and segmenting abnormal regions in medical images.

3.2 Multi-Level Adaptation
In this section, we will describe how we integrate the adapters with the

CLIP [19]’s image encoder using the multi-level adaptation mechanism. With a
small number of learnable parameters, this can help us address the AD prob-
lem effectively. We will present three parts: CLIP [19]’s image encoder, adapter
architecture, and integration of CLIP [19]’s image encoder and the adapters.

3.2.1 CLIP image encoder
With the approach of using the ViT model [7] for the CLIP [19]’s image

encoder, as shown in Fig. 1, an image I ∈ RH×W×3, where H and W de-
note the height and width of the image. Firstly, It changed into sequence of 2D
patches Ip ∈ RNp×S2×3, where S and Np represent the patch size and the number
of patches. Then, the transformer layer projects Ip into the embedded feature
space. Subsequently, it passes through multiple transformer layers. We denote
the feature at the i-th stage as Fi ∈ RNp×D, where D denotes the embedding
dimension.

3.2.2 Adapter architecture
In this section, we present the converter used to extract local features to

support the two problems of classification and segmentation. By combining linear
layers together according to a bottleneck design [8].

From the Fig. 2 (a), the input to the adapter is F , a feature extracted from
the CLIP model [19]. Each adapter is composed of two components, Aac and
Aas, responsible for processing classification and segmentation tasks, respec-
tively. Both Aac and Aas adopt a bottleneck architecture [8], enabling efficient
utilization of extracted features before passing them back to the CLIP image en-
coder [19]. From the Fig. 2 (b), the detailed architecture of the adapter consists
of two linear layers with a LeakyReLU activation layer in between.
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Fig. 2: Illustration of the Visual Adapter architecture. (a) The left figure presents the
general architecture of the Visual Adapter, comprising two modules: the classification
adapter Aac and the segmentation adapter Aas. (b) The right figure details the archi-
tecture of each adapter module Aac/as.

The adapter will produce {Fac, Fas} which will be combined with text feature
Ftext later, and {Fup,ac, Fup,as} which will be integrated back with the input
feature Ff . Thus, each adapter receives F ′

f as input and will go through two
parts Aac and Aas. The output of each adapter includes:

– F ∗ is the feature that will be obtained by combining the features from Fup,ac,
Fup,as and F , calculated by formula:

F ∗ = γF + αFup,ac + βFup,as (4)

With γ, α, β being the ratio to adjust the level of initial knowledge retention
to improve the efficiency of the model, the team is using a parameter set of
γ = 0.8, α = 0.1, β = 0.1.

– Fac, Fas are features used for classification and segmentation problems.

3.2.3 Integration of CLIP image encoder and adapters

In the CLIP image encoder [19] with the ViT [7] architecture, after the image
undergoes several layers to become Ip, the sequence of transformed classes will be
divided into four sequential stages (S1 to S4), with an integration transformation
module Al with l ∈ {1, 2, 3, 4} between each stage.

At each transformation module Al , l ∈ {1, 2, 3, 4}, the input will be the
feature Fl,f obtained at each stage l ∈ {1, 2, 3, 4}. The output includes Fl,ac,
Fl,as, which is used to calculate with text features, and F ∗

l , which is used as
input for the next stage.

3.3 Integration of features between images and text
After presenting how to obtain the text feature Ftext and the pairs of im-

age features {Fl,ac, Fl,as} with l ∈ {1, 2, 3, 4}, in this section, we will describe
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how we combine them to calculate for both anomaly classification and anomaly
segmentation tasks.

3.3.1 Anomaly Classification
For the classification task, we calculate the cosine similarity between the

adapter modules Fl,ac, l ∈ {1, 2, 3, 4} and the text feature Ftext. Thus, for each
Fl,ac, we obtain:

Pl,ac = Norm(softmax(Fl,ac ∗ Ftext)), l ∈ {1, 2, 3, 4} (5)

When performing matrix multiplication, we apply both the softmax(.) and
normalization Norm(.) operations to process the outputs.

For each layer l ∈ {1, 2, 3, 4}, the predictions Pl,ac consist of two components:

Pl,ac = {Pn
l,ac, P

a
l,ac}, (6)

where Pn
l,ac and P a

l,ac represent the predictions for the normal and abnormal
classification labels, respectively.

Here, Sac ∈ {+,−} denotes the anomaly classification label, + represents
abnormal images, and − represents normal images. To optimize the classification
task, we use the binary cross-entropy loss function:

Lac =

4∑
l=1

Lbce(Pl,ac, Sac), l ∈ {1, 2, 3, 4} (7)

Finally, we obtain the classification results by summing the outputs of P a
l,ac, l ∈

{1, 2, 3, 4}

Pac =

n=4∑
i=1

P a
l,ac (8)

3.3.2 Anomaly Segmentation
For the segmentation task, we calculate the cosine similarity between the

adapter modules Fl,as, l ∈ {1, 2, 3, 4} and the text feature Ftext, derived from
learnable prompts. Thus, for each Fl,as, we obtain:

P ′
l,as = softmax(Fl,as ∗ Ftext), l ∈ {1, 2, 3, 4} (9)

Subsequently, we perform operation BI(.), Bilinear Interpolation, to shape the
anomaly map into S × S and resize it back to the original dimensions of the
input image using bilinear interpolation:

Pl,as = BI(P ′
l,as), l ∈ {1, 2, 3, 4} (10)

After the above calculations, we obtain four segmentation labels Pl,as, l ∈
{1, 2, 3, 4} with each Pl,as = {Pn

l,as, P
a
l,as} denotes the normal and abnormal

segmentation labels.
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To optimize, Sseg ∈ RH×W denote segmentation label, and Sseg is a matrix
with 2 values: 0 and 1. We use Focal [16] and Dice [18] to optimize the segmen-
tation task. The loss function Focal [16] is particularly effective in addressing
class imbalance issues.

Las,l =Lfocal(Pl,as, Sas) + Ldice(P
a
l,as, Sas)

+ Ldice(P
n
l,as, 1− Sas), l ∈ {1, 2, 3, 4} (11)

Finally, to obtain the final segmentation label, we perform matrix addition on
the four values Pl,as obtained above:

Pas =

n=4∑
i=1

Pl,as (12)

The segmentation label Pas is thus created by aligning the text-derived se-
mantics with multi-level visual features, effectively capturing both normal and
abnormal regions in medical images. Optimizing this process with Focal Loss [16]
and Dice Loss [18] ensures accurate and robust segmentation.

4 Experiments

4.1 Experimental Setup

Datasets. We conducted experiments on six distinct medical datasets span-
ning various domains: brain MRI [1, 2, 17], liver CT [4, 15], retinal OCT [9, 14],
chest X-ray [20], and digital histopathology (HIS) [3]. The Brain MRI dataset
[1, 2, 17] comprises 2D brain MRI images, including both normal and abnor-
mal cases (affected by cancer). The Liver CT dataset [4,15] is constructed from
two datasets: BTCV [4] and LiTS [15]. BTCV includes 50 3D abdominal CT
scans, while LiTS consists of 131 3D abdominal CT scans. The Retinal OCT
dataset [9, 14] contains two distinct OCT datasets. The RESC dataset [9] pro-
vides segmentation labels, delineating areas affected by macular edema, whereas
the OCT17 dataset [14] is intended for classification tasks, containing retinal
OCT images categorized into three types of abnormalities. The Chest X-ray
dataset [20] comprises 108,948 frontal-view X-ray images of 32,717 unique pa-
tients, annotated with eight disease labels obtained through text mining. Lastly,
the HIS dataset [3] includes 400 whole slide images (WSI) of lymph node sections
stained with hematoxylin and eosin (H&E) from breast cancer patients.

Baselines and Metrics. To comprehensively evaluate our proposed model,
we compare it with prior state-of-the-art (SOTA) models. For the zero-shot
approach, we compare our model with three other models: WinCLIP [13], April-
GAN [5], and MVFA-AD [10]. For the few-shot approach, we compare it with
four methods: DRA [6], BGAD [22], April-GAN [5], and MVFA-AD [10]. Exper-
imental results for WinCLIP [13], April-GAN [5], MVFA-AD [10], and DRA [6],
BGAD [22] are obtained from the study by [11]. We utilize the area under the
Receiver Operating Characteristic curve metric (AUC) as the evaluation metric.
This metric serves as a standard measure for anomaly detection, divided into two
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Table 1: The results are compared with state-of-the-art models in medical image
anomaly detection. The outcomes are evaluated using the AUC (Area Under the Curve)
metric (%) for both anomaly classification (AC) and anomaly segmentation (AS). The
performance of previous methods was collected from the study by Huang et al. [11].

Method

Dataset
Only classification Classification & Segmentation

HIS [3] ChestXray [20] OCT17 [14] BrainMRI [1, 2, 17] LiverCT [4,15] RESC [9]
AC AS AC AS AC AS

WinCLIP [13] 69.85 70.86 46.64 66.49 85.99 64.20 96.20 42.51 80.56
April-GAN [5] 72.36 57.49 92.61 76.43 91.79 70.57 97.05 75.67 85.23
MVFA-AD [11] 77.90 71.11 95.40 78.63 90.27 76.24 97.85 83.31 92.05

MLA-PL (Ours) 79.89 68.65 96.35 73.62 89.79 76.77 98.82 84.50 92.27

scales for evaluation: image-level for abnormality classification and pixel-level for
abnormality segmentation.

Implementation Details. We employ the CLIP model using the ViT-L/14
architecture, processing input images at a resolution of 240. This model consists
of 24 layers organized into 4 stages, each containing 6 layers. For training on
Google Colab Pro, we utilize the Adam optimizer with a fixed learning rate of
1e-4 for visual adaptors and 1e-3 for the prompt learner, employing a batch size
of 16 over 50 epochs.

4.2 Experimental Results
Zero-shot learning. For the zero-shot learning task, we will train on five

datasets and evaluate on the remaining dataset. For instance, when evaluat-
ing on the ChestXray dataset, we will train on the HIS, OCT17, BrainMRI,
LiverCT, and RESC datasets. Evaluation on the LiverCT, RESC, BrainMRI
datasets includes both classification and segmentation tasks. Meanwhile, evalu-
ation on ChestXray, HIS, and OCT17 datasets is limited to classification tasks
only. The evaluation results of the model show that it surpasses the performance
of the state-of-the-art model [11] on the HIS dataset (by more than 1.99%),
OCT17 dataset (by more than 0.95%), LiverCT dataset (by 0.53% in AC and
0.97% in AS), and RESC dataset (by 1.19% in AC and 0.22% in AS). Detailed
experimental results are provided in Table 1.

Few-shot learning. We conducted a comprehensive comparison of our pro-
posed model against four previous methods: DRA [6], BGAD [22], April-GAN [5],
and MVFA-AD [11]. In the Abnormality Classification (AC) task, our model con-
sistently outperformed the others, especially in challenging datasets such as HIS
and Chest X-ray, achieving notable improvements in accuracy. For the Abnor-
mality Segmentation (AS) task, our model demonstrated superior performance
in the Liver CT and RESC datasets, with segmentation results surpassing those
of the compared models. Each model was evaluated on few-shot learning scenar-
ios with k = 2, 4, 8, 16, demonstrating our model’s robustness and effectiveness
in low-data environments. The results clearly indicate that our model offers sig-
nificant advancements in both detection and segmentation tasks, establishing it
as a leading approach for medical image analysis. Detailed experimental results
are provided in Table 2.
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Table 2: In few-shot learning, when compared with state-of-the-art models in medical
image anomaly detection, we observe that our model performs better in 16-shot. Ad-
ditionally, in settings with shot = 2, 4, 8, 16, our model also achieves superior results
compared to previous models on certain datasets. The results are evaluated using the
AUC (Area Under the Curve) metric (%) for both anomaly classification (AC) and
anomaly segmentation (AS). The performance of previous methods was collected from
the study by Huang et al. [11].

Shots Method

Dataset
Only classification Classification & Segmentation

HIS [3] ChestXray [20] OCT17 [14] BrainMRI [1,2, 17] LiverCT [4,15] RESC [9]
AC AS AC AS AC AS

2-shot

DRA [6] 72.91 72.22 98.08 71.78 72.09 57.17 63.13 85.69 65.59
BGAD [22] - - - 78.70 92.42 72.27 98.71 83.58 92.10

April-GAN [5] 69.57 69.84 99.21 78.45 94.02 57.80 95.87 89.44 96.39
MVFA-AD [11] 82.61 81.32 97.98 92.72 96.55 81.08 96.57 91.36 98.11

MLA-PL (Ours) 71.45 86.07 98.16 92.73 96.98 81.81 98.02 92.17 97.63

4-shot

DRA [6] 68.73 75.81 99.06 80.62 74.77 59.64 71.79 90.90 77.28
BGAD [22] - - - 83.56 92.68 72.48 98.88 86.22 93.84

April-GAN [5] 76.11 77.43 99.41 89.18 94.67 53.05 96.24 94.70 97.98
MVFA-AD [11] 82.71 81.95 99.38 92.44 97.30 81.18 99.73 96.18 98.97

MLA-PL (Ours) 83.05 82.13 99.66 91.34 97.10 84.50 99.63 93.47 99.02

8-shot

DRA [6] 74.33 82.70 99.13 85.94 75.32 72.53 81.78 93.06 83.07
BGAD [22] - - - 88.01 94.32 74.60 99.00 89.96 96.06

April-GAN [5] 81.70 73.69 99.75 88.41 95.50 62.38 97.56 91.36 97.36
MVFA-AD [11] 85.10 83.89 99.64 92.61 97.21 85.90 99.79 96.57 99.00

MLA-PL (Ours) 87.38 84.12 99.15 91.9 96.95 89.39 99.65 97.14 98.92

16-shot

DRA [6] 79.16 85.01 99.87 82.99 80.45 80.89 93.00 94.88 84.01
BGAD [22] - - - 88.05 95.29 78.79 99.25 91.29 97.07

April-GAN [5] 81.16 78.62 99.93 94.03 96.17 82.94 99.64 95.96 98.47
MVFA-AD [11] 82.62 85.72 99.66 94.40 97.70 83.85 99.73 97.25 99.07

MLA-PL (Ours) 85.56 87.39 99.93 94.51 97.91 92.75 99.64 97.37 99.34

Finally, we visualize images from three datasets with segmentation data:
BrainMRI [1, 2, 17], LiverCT [4, 15], and RESC [9]. The results are displayed
in Figure 3. From left to right, there are three large columns, each containing
three random images from the BrainMRI [1,2,17], LiverCT [4,15], and RESC [9]
datasets. The first row shows the original medical images, while the next two
rows display the heatmap and segmentation results for zero-shot and few-shot
learning methods with k = 2, 4, 8, 16, the last row shows the images with ground
truth.

In conclusion, our experimental results demonstrate the effectiveness and
robustness of our proposed model in both zero-shot and few-shot learning sce-
narios for medical image analysis. In the zero-shot learning task, our model con-
sistently outperforms the state-of-the-art methods on various datasets, showing
significant improvements in both classification and segmentation tasks. Specif-
ically, our model surpasses the performance of the leading model on the HIS,
OCT17, LiverCT, and RESC datasets, establishing a new benchmark for these
tasks. In the few-shot learning task, our model also shows superior performance
compared to four established methods (DRA [6], BGAD [22], April-GAN [5],
and MVFA-AD [11]) across six diverse datasets. The consistent improvements
across different few-shot scenarios (k = 2, 4, 8, 16) highlight our model’s ability
to effectively learn from limited data. These results underscore the potential of



Abnormality Detection In Medical Image Based On Visual-Language Model 11

Fig. 3: We illustrate the segmentation results of the proposed model on three datasets:
BrainMRI [1,2,17], LiverCT [4,15], and RESC [9]. The results are shown for both zero-
shot and few-shot learning methods (with 2, 4, 8, and 16 shots).
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our approach to significantly advance the field of medical image analysis, pro-
viding a robust and accurate solution for both abnormality classification and
segmentation tasks.

5 Conclusion

In this study, we propose a method that combines Prompt Learning for
CLIP’s Text Encoder and Visual Adaptors for CLIP’s Visual Encoder. We also
demonstrate the strengths of CLIP for downstream tasks. Prompt Learning helps
doctors bridge the gap between "natural" and "medical" semantics, enabling
CLIP to grasp the meanings of medical images. Additionally, the Visual Adap-
tor aids CLIP in capturing high-level semantics for pixel-level segmentation. Our
model has achieved promising results in both zero-shot and few-shot Abnormal-
ity Classification (AC) and Abnormality Segmentation (AS) tasks, indicating its
potential for future research in this field.

In the future, we will experiment with additional methods based on the
current idea and further improve certain parts. One promising direction we are
exploring is the multi-level adapter forward prompt learner. Additionally, we are
currently working on constructing a bone dataset for classification and segmen-
tation tasks based on this model. However, this requires considerable time and
support from medical professionals. We hope to publicly release a bone medical
dataset in the future for the community, as this type of data is still relatively
underrepresented in medical research.

Moreover, it would be valuable to investigate whether there are specific
datasets on which this architecture might not perform well. Understanding such
limitations could provide deeper insights into the strengths and weaknesses of the
proposed method. We consider this an important direction for future research
and aim to address it in subsequent studies.
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