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Abstract. Inadequate training data and class imbalances will often af-
fect the generalizability of many deep learning models. Our work pro-
poses a solution leveraging generative image-to-image translation as a
data augmentation tool. We train a CycleGAN and utilize a semantic
binary mask for controllable synthesis of pathology onto healthy cases.
We validate our approach using the publicly available BReAst Carcinoma
Subtyping (BRACS) dataset comprising breast histology images. Relying
on binary masks means we retain the original features while introduc-
ing pathology without producing unrealistic synthetic imagery. When
enhanced with classical data augmentation, our augmented dataset in-
creases breast lesion detection capabilities. The model trained with the
combined data has its area under the curve (AUC) closest to one, imply-
ing a minimal risk of missing potential positive diagnoses and the chance
to identify potential breast cancer cases early. Our code is available at
https://github.com/Annette29/data-augmentation-cycleGAN.git.

Keywords: Medical image synthesis · Adversarial learning · Image-to-
image translation · Data augmentation

1 Introduction

Most datasets comprising whole slide images (WSIs) lack sufficient data to al-
low deep learning models to learn effectively. Many of these histology images
are exceptionally large and contain complex information, making it time- and
resource-consuming for professionals with medical degrees to analyze and anno-
tate. Moreover, sharing medical data between institutions is complicated since
a democratized dataset would require informed consent from healthcare profes-
sionals, patients, hospital administrators, and subsequent users on when and
how the data could be used [3]. Also, since different countries often use unique
protocols to code patient information, such a detailed guideline might still not
be enough to allow information sharing to create a uniform large-scale dataset
for various diseases.
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However, using WSIs remains one of the best ways to provide cancer diag-
nosis and prognosis, implying most diagnostic models need to be trained using
these images. But, doing so without addressing the issue of limited training sets
that fail to fully represent underlying distributions risks creating diagnostic so-
lutions that unexpectedly fail when introduced to unfamiliar data [6]. Therefore,
the most straightforward solution, for now, is adding synthetic samples to the
original data created using generative methods with photorealistic outputs.

Generative Adversarial Networks (GANs) [9] have recently been adopted as
a data augmentation approach for medical images. GANs can create new data
instances by learning from patterns in real data and producing synthetic exam-
ples that reflect those in the original dataset. These unsupervised models have
achieved remarkable success in generating high-quality training data, leading to
widespread application in furthering the study of rare diseases. An important
caveat is that relying on random noise, as the original GAN model did, to syn-
thesize high-resolution outputs, still requires large datasets for efficient training.

As a result, we train a cycle-consistent generative adversarial network (Cycle-
GAN) to synthesize pathology onto images of healthy breast tissue using binary
semantic masks to control the shape and location of breast lesions. Introduc-
ing these masks as additional input ensures that pathology is only in-painted
in areas annotated by trained pathologists. Afterward, we augment the original
dataset with the synthetic samples and train a DenseNet classification model to
distinguish between samples with and without lesions to check if our approach
improves generalization ability. Although breast cancer is unfortunately not a
rare illness, most existing datasets designate patient cases as either malignant or
benign, ignoring the large spectrum of lesions encountered during diagnosis and
clinical artifacts that often present in non-standardized hospital images. Conse-
quently, we aim to contribute to creating a cohort of WSIs encompassing a large
variability of breast lesions, including precancerous ones that pathologists would
encounter when advising patients.

Our paper is structured as follows: Section 2 discusses other works that have
utilized GANs for medical image synthesis. Section 3 outlines our procedure for
mask-guided image-to-image translation, including model architectural details
and how to modify image patches sampled from the real data to fit the tar-
get output. Additionally, Section 4 specifies the training details, including the
dataset used, while Section 5 shows slide-level qualitative results and elaborates
on the domain adaptation approach to test the impact of the generated patho-
logical images. Finally, Section 6 discusses the experimental findings and future
improvements.

2 Related Work

Researchers have adopted GANs as an augmentation tool to create high-fidelity
images to train supervised diagnostic models with demonstrated promising re-
sults. Notably, in [31], a multi-stream GAN that improves synthesis performance
for brain images of glioma patients is introduced, while Madani et al . [21] com-
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pare traditional augmentation methods to GAN-based ones for chest X-ray im-
ages and confirm improved accuracy when GANs are used. In [27], a two-stage
GAN is used to simulate realistic ultrasound images, and a domain-aware frame-
work has also been adopted to synthesize stroke lesions and kidney tumors [33].

Specifically, CycleGANs have been used to synthesize cerebral microbleeds
in brain injury scans [8] and to automatically generate pathology in normal
radiographs to improve bone lesion classification [11]. They have also helped
generate CT images using a training dataset of MR images [19] and synthetic
colorectal polyp images for less common polyp classes [28]. Additionally, in [6],
CycleGAN is extended by introducing a region of interest discriminator for stain
transfer and modified to create artificially stained renal tissue images [5].

Alternatively, adversarial training has been co-opted to create healthy im-
ages from pathological pairs without identity loss [30], including pix2pix to create
anonymized MRI images with brain tumors [26] and progressive growing GANs
to aggregate information from skin lesion features and improve melanoma de-
tection [1]. Other instances of GANs favorably augmenting medical datasets
were present when a GAN with fully convolutional networks estimated desired
CT images given source MRI data [23], MI-GAN enhanced retinal image synthe-
sis [16], and segmentation masks of microscopy images were applied to synthesize
red blood cell images [3].

Unlike their diffusion counterparts that require long sampling times or Vari-
ational Auto-Encoders (VAEs) that may produce fuzzy, non-detailed images,
GANs have consistently generated high-quality outputs with excellent details,
making them ideal for medical image augmentation [18]. Although many works
target X-ray, CT, and MRI data, whole slide images of breast tissue have re-
ceived minimal attention. Therefore, we explore how the CycleGAN architecture
can be modified for breast lesion synthesis and how such an augmented dataset
impacts classification task performance.

3 Methodology

We describe a pathology factorization technique that relies on adversarial and
cycle-consistent learning to increase the number of samples used to train a clas-
sification model, with the understanding that the method can be extended to
images of any modality with any abnormality, even without additional annota-
tions of the surrounding tissue.

3.1 Network Architecture

Zhu et al . [32] introduced CycleGAN to tackle an unpaired setting during image-
to-image translation and alter the style of the input images without changing
their content. CycleGAN comprises two generators, GXY : X → Y and GY X :
Y → X, with corresponding discriminators, DY and DX . In our case, we have
generators, GHP : H → P and GPH : P → H and discriminators, DP and
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DH , where H and P are images of breast tissue in the healthy and pathological
domains.

Our generators are UNetResNet34 models with a pre-trained ResNet34 net-
work as the encoder inspired by [15], who combine a UNet and Residual Networks
(ResNet) model for a segmentation task and observe improved performance.
ResNet models employ residual blocks with skip connections that enhance gra-
dient flow during backpropagation, enabling deeper networks to learn desired
features better through identity mappings [14]. In addition to supporting the
learning of complex transformations, ResNet’s residual connections also help
mitigate vanishing and exploding gradients by allowing direct gradient flow.
On the other hand, UNet models are designed for biomedical image analysis
tasks, making them ideal when detailed, pixel-wise maps of input images are
required [12]. Our decoder comprises transposed convolutional layers connected
to the corresponding encoder layers through skip connections, which is a key
characteristic of UNet models [25]. Skip connections ensure that the decoder
retains any spatial information that may have been lost during downsampling.

The discriminators follow the PatchGAN architecture in [17] as they output
a classification matrix of probabilities determining how realistic patches of the
generated image are, using values ranging from 0 to 1. PatchGAN divides the
generator’s output image into 70× 70 patches and slides its field of view across
the entire region while creating its output. Therefore, a PatchGAN discriminator
will enforce photo-realism in synthetic images through:

Dpatch : H → {0, 1}h×w. (1)

by producing a h×w grid of outputs that is then compared with a corresponding
grid of truth labels [6]. Although we train both generators, we focus on only one
direction of synthesis (H → P ), as it is often rarer to obtain large numbers of
samples in the pathological domain.

3.2 Mask-Based Translation

We use a semantic mask as additional input to the CycleGAN generators to guide
the translation between the pathological and healthy domains. The grayscale
image directs the data generation process, introducing some control on output
modes, as suggested in [22]. We create a corresponding binary mask for each
sample in the pathological data distribution as described in Section 4, but each
healthy sample is assigned a pathology mask semi-randomly when fed into GHP .

The mask is applied by multiplying it elementwise with the feature maps in
the decoder to emphasize the shape and location of the lesions. By scaling the
feature maps guided by the mask, we can localize areas on the binary mask with
a value of 1 and suppress those with a value of 0. As a result, the values of the
feature maps are directly influenced by those of the mask in a more aggressive
attempt to highlight valuable regions. In the end, we are mindful that maintain-
ing the structure of the original images is critical even when enhancing them
to include pathological features. Additionally, feature-map elementwise multi-
plication addresses the one-to-many problem present in healthy-to-pathological
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synthesis tasks since numerous ways exist to introduce pathology to a healthy
sample. Notably, the masks provide explicit information about the shape and
location of the desired pathological features.

3.3 Loss Functions

The learning of a typical CycleGAN is guided by three loss terms: main ad-
versarial loss, cycle consistency loss, and an optional identity loss [32]. Cycle
consistency and adversarial losses are necessary because a CycleGAN with the
former alone does not produce realistic samples with discernible features. In con-
trast, one with adversarial loss only suffers from mode collapse [32]. In addition,
inspired by [8], we introduce an abnormality mask loss in the second cycle to pre-
serve the features of the synthetic healthy samples in regions not emphasized by
the pathology mask used to create it. Therefore, we perform CycleGAN training
according to:

min
GHP ,GPH

max
DP ,DH

LCG =LGAN (GHP , DP , H, P ) + LGAN (GPH , DH , H, P ) (2)

+ λCY CLCY C(GHP , GPH , H, P ) (3)
+ λIDLID(GHP , GPH , H, P ) (4)
+ λAMLAM (GPH , H, P ). (5)

where LGAN is the main adversarial loss. In our case, LGAN is the Wasserstein
loss with gradient penalty [10] used by the PatchGAN discriminators, DH and
DP . Gulrajani et al . [10] extended the original Wasserstein loss [2] by introducing
a gradient penalty to encourage the discriminator’s weights to have infinite values
without raising its gradient norm above 1 to enforce 1-Lipshitz continuity [29].

In addition, LCY C is the cycle consistency loss that encourages similarity
between real and synthetic images with the same content and LID is the identity
loss for color preservation in the synthetic outputs. Finally, LAM the additional
abnormality mask loss is used only in the second training cycle to guarantee
that changes are restricted to pathological regions when removing pathology.
λCYC, λID, and λAM are manually adjusted weights that control the contribution
of each loss function to the overall LCG.

3.4 Synthesis Framework

The proposed approach has two training cycles: forward healthy-to-pathological-
to-healthy (HPH) and backward pathological-to-healthy-to-pathological (PHP).

During the HPH cycle, GHP receives a sample from the healthy data distri-
bution and a pathology mask assigned semi-randomly as input. GHP synthesizes
pathology onto the input sample in the areas specified by the binary mask with-
out altering the remaining features to create a synthetic pathological image as
output. DP receives this generator’s output and attempts to distinguish it from
real pathological images using LGAN . LGAN also informs GHP how well it is
doing in fooling DP , to guide its learning.
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Table 1: New BRACS data distribution according to lesion type.

Without Lesions With Lesions

Train 114 281
Validation 28 37
Test 18 69

Additionally, the synthetic image is concatenated with the semi-random mask
that helped create it and fed into GPH as input so it can use them to create
synthetic healthy samples. This step is necessary to ensure cycle consistency,
and so a pair of real and synthetic healthy images are compared using LCY C

by calculating the pixel distance between them [32]. Lastly, the healthy input
sample is combined with an empty mask whose values are all zero and fed into
GPH which attempts to recreate a healthy image. LID helps analyze this second
pair to confirm that no distortions are present and that GPH maps any input to
itself and does not modify any healthy samples.

The reverse occurs during the PHP cycle with a corresponding pair of a
pathological sample and semantic mask fed into GPH , and the output evaluated
by DH . In this case, DH uses LGAN to discriminate between real and synthetic
healthy images and GHP is the generator used to create samples to be com-
pared when determining cycle consistency and identity preservation. But LAM

is also employed to confirm that all other image features and tissue structures are
preserved when pathology is removed from the image, and a synthetic healthy
sample is created by comparing the real pathological data to synthetic healthy
data.

4 Experiments

4.1 Data

We validate our method on the Breast Carcinoma Subtyping (BRACS) dataset,
which comprises Hematoxylin and Eosin (H&E)-stained WSIs of breast tissue [7].
BRACS has 547 images from 151 patients annotated through the consensus of
three board-certified pathologists into three lesion types: 89 as atypical, 265 as
benign, and 193 as malignant [7]. The authors further subdivide the data into
seven categories: atypical into atypical ductal hyperplasia (ADH) and flat ep-
ithelial atypia (FEA), benign into normal tissue (N), pathological benign (PB),
and usual ductal hyperplasia (UDH), and finally malignant into ductal carci-
noma in situ (DCIS), and invasive carcinoma (IC) depending on the features of
the tissue subtypes. A detailed explanation and a representative sample of the
subtypes is provided in [7].

Since we focus on synthesizing pathology onto healthy cells, we reclassify
the images into two groups: 387 in With Lesions and 160 in Without Lesions.
The With Lesions category comprises images from the ADH, PB, DCIS, and IC
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Table 2: Patch-level split according to lesion type.

Without Lesions With Lesions

Train 1630 3658
Validation 347 312
Test 187 571

categories, while Without Lesions has data from the FEA, N, and UDH types.
Brancati et al . [7] provide pre-defined splits into training, validation, and test
sets; we maintain those splits even after reclassification. For example, the file
named BRACS_1238.svs belonged to the benign type and PB sub-category in
the training dataset, and so even if we reclassify it into the With Lesions class,
it remains in the training set. Table 1 reports the number of WSIs according to
the new lesion types after reclassification.

Patch Sampling. The BRACS dataset utilizes sub-region annotations that
outline regions of interest (ROIs), ranging over variable dimensions to include, in
their entirety, every diagnostic lesion [7]. Hence, the authors include annotation
files in qpdata format based on the QuPath software [4] for visualizing each ROI
inside their respective WSI.

We loaded the Tiled TIFF image (SVS) files and corresponding qpdata anno-
tations into QuPath for each image in the With Lesions class. Then, we extracted
GeoJSON files that included coordinates describing the pathology’s shape and
location on the WSI. Next, we used the Rasterio Python library to read these
geospatial data and create TIFF binary masks of the same size, distributed into
the same training, validation, and test sets as their corresponding SVS images.
However, the SVS WSI and TIFF binary masks proved too large to be imported
directly during CycleGAN training, so we sampled relevant patches from each
file. Guided by the GeoJSON coordinates to avoid the loss of diagnostically useful
information, we extracted patches from the WSIs and binary masks. Therefore,
each image and mask had different patches depending on how many ROIs were
in each WSI.

Guided by [13], we divided each slide in the Without Lesions class into a ran-
dom subset of non-background but recognizable 1024× 1024 patches. A sample
was considered a background image if more than 97.5% of its pixels exceeded an
85% intensity on all three RGB channels [13]. Additionally, we used the variance
of the Laplacian to check focus quality and guarantee that all samples were of
high enough quality and had no non-tissue objects. Based on these two condi-
tions, certain SVS images yielded as many as 110 patches, while others had as
few as five patches (with an average of 12). Finally, we conditionally applied
random sampling for images with more than 20 patches, keeping at least 10 in
such cases.

After extraction, our dataset comprised 6,705 patches, with 2,164 in the
Without Lesions class and 4,541 in the With Lesions category, all distributed
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into test, validation, and training sets that mirror their parent WSIs, as shown in
Table 2. The patch files are in Portable Network Graphics (PNG) format, where
the file BRACS_1003732_x=47434_y=22955.png describes a patch extracted from
the WSI named BRACS_1003732.svs at the spatial coordinates (47434, 22955).

4.2 Training Details

We train our CycleGAN using the NVIDIA A100 GPU provided as part of the
Google Colab Pro+ subscription package, with a batch size of eight randomly
sampled image and mask pairs. Models use the Adam optimizer with a learning
rate of 2e-4, (β0, β1) = (0.5, 0.999), and randomly initialized weights.

The two generators comprise a UNet-style decoder and an encoder that reuses
weights from a pre-trained ResNet34 model whose first layer is modified to accept
four channels since the inputs combine an RGB image with a grayscale mask. The
downsampling path comprises four residual blocks and a self-attention layer to
help the model better understand the input pairs’ overall structure. The UNet de-
coder has four ConvTranspose2D layers, which, together with increasing spatial
resolution, perform element-wise multiplication to concatenate learned encoder
features with upsampled masks. The final output is, thus, a 1 × 1 convolution
that has been multiplied by the original mask to emphasize relevant pathology
areas.

On the other hand, the PatchGAN discriminators comprise five convolutional
layers that extract features at different scales (64, 128, 256, and 512) with a fixed
4×4 kernel size and stride of 2, except for the final two layers. This way, the dis-
criminators can access input images patch-wise as spatial dimensions gradually
reduce. We add LeakyReLU activations with a 0.2 negative slope to capture all
subtle details without discarding negative values and InstanceNorm2D normal-
ization, so our model is robust to contrast changes. Dropout with a probability
of 0.1 is also applied throughout the generators and discriminators to address
overfitting.

Inspired by [24], we introduce a stopping criterion during training instead
of a fixed number of epochs by monitoring validation loss on previously unseen
data every 20 epochs. Training stops if the validation loss does not significantly
improve after five consecutive validation checks, and model checkpoints are saved
whenever the loss improves.

5 Evaluation

5.1 Patch-Level Qualitative Results

Since the BRACS dataset contains expert annotations for each image, we can
evaluate model performance by approximating the location of the lesions and
their expected shape once pathology synthesis has been performed. Our pri-
mary focus is a healthy-to-pathological translation, so we first produce synthetic
pathological images for each of the 187 without-lesion patches in the test set. We
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Fig. 1: Sample patches from the BRACS dataset with random binary masks and the
resulting synthetic images created using GHP .

(a) Without classical augmentation (b) With classical augmentation

Fig. 2: ROC performance on six training instances with original, generated, and
combined data.

visualize samples in Fig. 1 for the proposed method alongside the real healthy
sample and binary mask. One may observe that the network accurately localizes
the pathology location and shape because it learns the shape and boundaries
from the semantic mask. However, some of the generated data has different in-
tensity values than the original image, for instance, the output on the second
and third columns in Fig. 1. We hypothesize that the model profits from the
one-to-one translation with the synthesis framework centered around the binary
masks, as many of the output images contain realistic tissue structures.

5.2 Domain Adaptation

We ran an additional experiment designed as a classification task explicitly fo-
cusing on how using synthetic images to train the model affected network perfor-
mance. We extend the DenseNet-121 model introduced by [12] by adding fully
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connected layers after the original DenseNet blocks. First, we freeze the model’s
initial layers and leverage pre-trained ImageNet weights for feature extraction.
Next, we regularize the network with dilated blocks of linear transformations,
batch normalization, ReLU activations, and dropout layers to reduce dimension-
ality and ensure the model can recognize lesions varying in size and location. The
primary loss function is the focal loss (α, γ) = (2, 3) since we intend for our model
to focus on less common lesions and learn better from often-misclassified samples
to avoid bias towards healthy images. Proposed in [20], the authors define focal
loss as:

FL(pt) = −(1− pt)
γ log(pt). (6)

where pt is the model’s estimate for the true class label, meaning (1 − pt) re-
duces the contributions that easy-to-classify examples make to the overall loss
value. Lin et al . [20] reshape the more common cross-entropy loss to address
class imbalances and emphasize the impact of less common samples on gradient
updates.

We train three different model instances using real data only, synthetic data
only, and a combined set that samples images from the real and synthetic data
using a 1:1 ratio. We also train the same number of model instances, but this
time, each data distribution is augmented using classical methods, specifically
horizontal and vertical flipping, rotation, shifting, scaling, shearing, Gaussian
noise implemented as a custom transformation, and randomly applied brightness
and contrast.

The classification performance of the six model instances is evaluated by
plotting a Receiver Operating Characteristics (ROC) curve and calculating the
area under the curve (AUC). The ROC curves in Fig. 2 visually represent how
well each model can distinguish between images with and without lesions and
how the different instances tradeoff between true and false positive rates.

A slight but consistent improvement is evident when using the combined
dataset augmented with traditional approaches, as this model instance attains
the highest AUC score. However, when synthetic data is used independently, the
network has a significantly lower score, and we speculate this could be because
some of the augmentations alter the appearance of the pathology introduced
by the binary masks, confusing the model. This conflict between synthetic data
and classical augmentations meant to change image features is unexpected and
merits further exploration in a later study.

Training without classical augmentation methods reduces the AUC score for
all models, but the instance trained with real and synthetic data maintains a
higher score. Interestingly, model performance is worst when using real data
without any augmentations, possibly because of the limited diversity and lack
of edge cases in the original samples.

We confirm that adopting generated images as an augmentation technique
will improve the performance of classification models, particularly their general-
ization ability. The slight benefit implies that adopting a translation approach
when creating synthetic samples and using them alongside real data will maxi-
mize model capability for detection tasks.
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6 Discussion

This paper discusses an approach to synthesize pathology onto healthy tissue
samples guided by binary masks as a conditional element introduced to a mod-
ified CycleGAN framework. The generated data is then combined with real im-
ages to increase an otherwise small dataset meaningfully. The impact of such
an augmentation strategy is then studied through a lesion classification task,
resulting in a marginal improvement, particularly in how effective the model is
at differentiating between classes, making it a more reliable diagnostic tool.

In summation, based on the experiments we have described, using GANs for
data generation guided by a binary mask to localize the appearance of pathol-
ogy and further combining the synthetic samples with the original images to
train diagnostic models benefits generalization performance. Nonetheless, the
additional overhead, particularly the heavy computation resources required and
the model’s unstable training process, may not justify the slight improvement
depending on the specific medical task. Although our technique still relies on ex-
pert annotations describing the pathology’s location on the image, our findings
have revealed a possibility for further automation, for instance, when shifting
between different imaging protocols.

Currently, our approach is limited since the model can only differentiate be-
tween samples with and without lesions. We intend to introduce an advanced
dataset split that will include healthy tissues and pathological subtypes to fine-
tune the solution and equip it with more detailed control. We also plan to syn-
thesize binary masks and introduce different pathology sizes and shapes that
address the variability encountered in real-world data and focus on less common
subtypes underrepresented in breast cancer datasets.
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