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Abstract. Face recognition systems are becoming more susceptible to
spoofing attacks, where an attacker employs a counterfeit face to mimic
an authorized person. Multiframe-based techniques have demonstrated
promising outcomes in improving supplementary tasks, such as creating
more robust depth maps compared to single-frame approaches. Never-
theless, the main focus in the state-of-the-art (SOTA) remains on single-
frame usage. At present, there are no a standardized baseline methods
available, even for basic binary classification, particularly targeting Do-
main Generalization, specifically the OCIM protocol. Numerous previous
studies have utilized their unique evaluation methods, which often lack
clarity and detailed information on frame sampling in multi-frame for-
mats, making reproducibility challenging. This work aims to tackle these
issues by setting a standard for face antispoofing (FAS) techniques us-
ing multiple frames. The proposed method will create and evaluate the
generalization of antispoofing system based on multiple frames. The re-
search objective include: (1) Develop a foundational baseline for utilizing
multiple frames in FAS; (2) Enhance the generalization capability of the
FAS model by leveraging multiple frames. The anticipated results of this
study encompass a robust multi-frame-based face antispoofing method
that can enhance generalization in intertest evaluations, along with an
understanding of the constraints and possible advancements of the pro-
posed framework.

Keywords: Multiple frames FAS · Domain Generalization Multiple Frames
FAS · Baseline Multiple Frames FAS

1 Introduction

Face antispoofing (FAS) stands as a crucial element in Biometric Verification
technology, working in tandem with Face Recognition (FR). The purpose of face
antispoofing is to thwart attempts at spoofing faces using physical attacks. The
commercial industry has embraced biometric verification under the banner of
Know Your Customer (KYC), which incorporates both Face Recognition and
face antispoofing. As identity attacks in FR evolve and become more sophisti-
cated, the threat of fake identity attacks designed to deceive the system increases.
This could potentially result in fraudulent transactions across various industries,
leading to substantial financial losses.
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Face antispoofing, also referred to as face liveness in some studies, is essen-
tially a risk to an individual’s identity. This identity could be manipulated or
falsified by printing someone’s face using various types of printers and paper.
Attacks could be carried out not only through printed mediums, but also using
screens. The resolution of these screens can range from commonly available ones
to advanced OLED screens. Besides these printed and screen-based attacks, the
advanced one could also be made in the form of realistic face masks. The primary
goal of face antispoofing System (FAS) is to counteract these types of attacks.

A key research area in FAS that many state-of-the-art models are attempt-
ing to address is the model’s generalization. Prior studies indicate that the face
antispoofing issue extends beyond a simple binary classification, presenting itself
as a fine-grained problem [12, 17, 23]. The term ’Fine-Grained classification’ is
used to describe the minor variations in training data that is not exist in test
data, such as spoof type attacks, different types of medium spoof, and environ-
mental factors, which could potentially result in erroneous inference outcomes.
Consequently, Domain Generalization (DG) has emerged as a prominent area of
research in FAS. DG is an approach where the training domain does not have
access to the test domain, with the goal of assessing the model’s generalization
robustness.

The progression of FAS has been characterized by the onset of binary clas-
sification [22], the implementation of depth networks with extra supervision [1],
the combination of depth and rPPG signals [10], the breakdown of spoof traces
into spoof noise and genuine faces [8], and the employment of generative AI [26]
to facilitate the network’s learning from synthetic datasets without labels, in
an unsupervised manner. In addition, the leading methods exhibited the appli-
cation of metric learning [7, 9, 14] which resulted in a significant performance
jump compared to the other method. Recently, the FAS issue has also seen the
application of LLM techniques, following the launch of FLIP [13], a framework
that employs CLIP [11] as the underlying pretrained model and is presently at
the forefront of evaluation metrics using the DG method.

The methods mentioned above all utilize the same input approach, which is
a single frame, as is common in general image classification as well as in Face
Anti Spoofing. The objective of this research is to investigate the application of
multiple or temporal frames as input. The exploration of multiple frames is based
solely on the fundamental concept that FAS is a fine-grained classification, and
the use of multiple frames could enable the network to learn more and extract
finer details compared to the single frame approach.

The concept of employing temporal frames is not a novel proposition in this
study. Wang et al. [18] highlight that the depth map produced by the auxiliary
network using temporal frames yields a superior depth map relative to the one
generated using a single frame. This leads to the assurance of a robust general-
ization. Furthermore, the initial temporal approach in FAS is discovered in Xu
et al. [21], where the research employed the pre-established CNN architecture
stack with an LSTM unit for every frame. Subsequently, a year later, Gan et al.
[5] delved into the first application of 3D CNN with AlexNet to fully harness the
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temporal frames. These methods have only been evaluated on casia and casia-
replay attack subsequently, with the evaluation being conducted to specifically
assess the intra-test. The recent approach known as Geometry-Aware Interac-
tion Network (GAIN) [3] has pioneered the integration of spatial and temporal
elements, employing dense face landmarks to extract additional features that
differentiate authentic and spoof facial movements.

Since then, the exploration of multiple frames in face antispoofing does not
evolve that fast compared to the number of methods published under single frame
approaches. The current SOTA in utilizing the multiple frames are exploring the
exploitation of more robust proposed auxiliary network [3, 18]. As this research
would like to highlight the Domain Generalization capability in FAS.

To the author’s knowledge, no current methods have explored domain char-
acteristics using multiple frames up to now. There are no baseline comparisons
with consistent settings in a multi-frame format, and previous studies lack de-
tails on sampling frames for training or on evaluation processes. Each proposed
method employs its own evaluation criteria, making it challenging to assess the
performance improvements of these methods.

A successful method in the single-frame domain is the metric learning ap-
proach, which leverages the intrinsic characteristics of each training dataset’s
domain to enhance the differentiation between live and spoof labels in their
embeddings. Currently, no studies have further explored these intrinsic factors
using multiple frames. Implementing such a framework would not only extract
more features but also enhance the intrinsic features of each domain dataset,
aiming for a more generalizable FAS model.

2 Previous Works

As some works explained that FAS is a fine grained classification [18], thus one of
the work to be able to extract a robust features is through the temporal frames.
There are some advantages of using multiple frames described by Wang et al. [18]
work where their temporal works aim at enhancing the depth map generated.
It is proved that in their work the Depth map generated using temporal frames
are more robust compared to the single frame.

The dual approach to multiple frame analysis can be categorized into two
types: one employing Conv2D and the other using Conv3D. The first imple-
mentation of Conv2D combined with LSTM was introduced by Xu et al. [21],
which was solely assessed using the intertest CASIA dataset. The concept of
incorporating multiple frames for input was initially proposed in Gan et al. [5],
employing a 3D CNN, with evaluations conducted on the Replay-Attack and
CASIA datasets through intra-test. Both studies briefly explored the impact of
varying the number of frames used during the training phase.

A significant challenge in developing inputs from multiple frames is the pres-
ence of inconsistent predictions within each frame of a video clip, as discussed
in [20]. It is assumed that a video clip, whether of a live or spoof subject, is
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assigned a consistent label that applies to all its frames. However, predictions
tend to vary across different frames.

To address the temporal inconsistency, two new loss functions, named
Temporal Consistency and Class Consistency Loss, were introduced by Xu et al.
[20]. Temporal Consistency Self-Supervision (Lt) aims to maintain temporal con-
sistency across several frames. Class Consistency Loss (Le) ensures that embed-
dings from the same class but different videos are similar. The classification
head uses the last frame as a reference, the temporal loss considers the last three
frames, and the class consistency loss is applied starting with the first frame
and continues up to the third-to-last frame. This loss functions are described in
equation 1.

Lt =
1

m

m∑
i=0

max
i,j∈v

∥ xi − xj ∥22; Le =
1

m

m∑
i=0

max yij ∥ xi − xj ∥22 (1)

where m is the batch size, xi and xj represent temporal frames from the same
video represents with v. Here, yij is 1 if xi and xj belong to the same class in
the batch; otherwise, yij is 0.

Metric Learning. One of the concept that utilizing all the intrinsic features
from datasets such as separating the dataset source or spoof type attacks proved
that able to improve the generalization of the model especially in FAS.

Asymmetric Triplet Mining Loss. The loss function proposed by Jia et al. [7]
in SSDG was designed to disperse spoofing attacks in the feature space while
keeping real ones close together. SSDG noted that spoofing attacks have a larger
variety of ways to be captured, so it is beneficial to have a dispersed feature
space. In contrast, the discrepancies between real ones are much smaller, so they
should be kept close together.

Domain Invariant Concentration Loss. introduced by Liao et al. [9] loss func-
tion unifies real faces from all domains into a single group and attempts to learn
their features embeddings that are invariant to this group. The real images are
forced to fit in the center of the embedding space, while the spoof images are
treated the same, despite each domain having its own characteristics of spoof
type attacks. This loss classifies the embeddings based on each corresponding
spoof type attack and is invariant to the source of the domains. It is also worth
noting that the author noticed that the combination of a transformer model so
called DiVT and this loss is already powerful in feature learning of the whole face,
compared to previous works that used complex adversarial training mechanisms.

Separability and Alignment Loss. The initial concept implementing this tech-
nique proposed by Sun et al. [14] in facial anti-spoofing, also known as SA-
FAS. Prior methods centered solely on separating embedding features. However,
separability by itself is not enough to enhance domain generalization. The iso-
lated feature clusters can reside anywhere within the feature space, causing the
domain-specific optimal hyperplane to remain inconsistent. Consequently, the
global classifier may still erroneously integrate spurious correlations.
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3 Methodology

Preprocess

● It will generate 30 frame for each second
● In total this video will resulting in 300 frames
● The preprocess frame subsequently perform face detector using MTCNN 

(Common face detector used in FAS)

1

(a) Preparing datasets visualization

(b) Video Frame Sampling Method used in Tem-
poral Segment Networks for Action Recognition
[16]

Fig. 1: The preprocessing and sampling methods in proposed baseline for Multiple
Frames based FAS

3.1 Preparing Datasets

Four datasets are used: oulu-npu [2], casia-mfsd [25], idiap replay-attack [4],
and msu-mfsd [19]. All datasets are in video format. Utilizing the single frame
method, which involved cropping and aligning the face, this project also involved
cropping each frame using the MTCNN Face Detector [24] to a dimension of
256x256. This process is described in Figure 1a. The first row represents the
extracted video into frames. The second row represents the input frames that
used in the experiment after preprocessed by face detector.

3.2 Handling Multiple Frames

The literature review does not provide specific details on the extraction of mul-
tiple frames [3, 17, 20, 21]. Consequently, the authors have referenced techniques
from action recognition, which similarly utilizes multiple frames. This study ad-
heres to the established methods for frame extraction as described in Wang
et al. [16]. The dataloader’s approach to managing multiple frames is depicted
in Figure 1b.

To fully understand the video frame sampling technique thoroughly, two key
variables are introduced as follows:
1. NUM_SEGMENTS

NUM_SEGMENTS refers to a variable that partitions the total number of
frames in the video into equal segments.

2. FRAMES_PER_SEGMENT
FRAMES_PER_SEGMENT denotes a variable that samples a specific num-
ber of frames within each segment. The selection of frames can either be
random or can target the central frame of each segment.

For example, given NUMBER_SEGMENTS = 4 and FRAMES_PER_SEGMENT
= 1, the video shown in Figure 1b contains a total of 12 frames. Consequently, 4
segments will be created, each containing 3 frames. Within each segment, only 1
frame will be sampled as specified by FRAMES_PER_SEGMENT. Therefore,
a total of 4 frames will be forwarded to the dataloader.
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3.3 Pretrained Model

All the feature extractor or image encoders used in this experiments are using
ResNet 18 both in using Conv2D and Conv3D. As the convolution is differ then
the pretrained model will be different as well. All the Conv2D using pretrained
from ImageNet (1000 classes), while the Conv3D using pretrained [6] from com-
bination of Kinetics 700 (700 classes) and Moments in Time (339 classes) where
in total has 1030 classes.

4 Baseline Multiple Frames FAS

The multi-frame FAS approach lacks baseline data, especially in cross-domain
contexts. Therefore, it is crucial to create a robust foundation for baseline com-
parisons for both CNN2D and CNN3D. The evaluation metrics are determined
at the video level. Video level implies that the total number of frames used dur-
ing training will be matched with the evaluation data. Consequently, all frames
within a single video clip are considered as one video level.

4.1 Temporal - ResNet18

In the baseline configuration, LSTM will be employed alongside Conv2D to fully
capture the temporal aspects. The image encoding is performed using ResNet
18. This architecture is illustrated in Figure 2a. The input consists of a video,
and the dataloader is structured into five dimensions: Batch B, the number of
frames per video (N), Image channels (C), Height (H), and Width (W).

The Conv2D in this context is limited to processing a single frame at a time.
As a result, each frame from the batch is individually extracted and subsequently
processed to merge the embeddings by stacking them. These stacked embeddings
are then fed into an LSTM for further processing. At the output of the LSTM,
a fully connected layer is utilized, which makes use of a Cross Entropy loss
function.

4.2 Temporal - ResNet3D 18

For the baseline Conv3D is also using ResNet3D18 [6]. As Conv3D could handle
multiple frames, subsequently the frames directly feed into the fully connected
layer with Cross Entropy loss function to predict the live/spoof images. This
network is describe in Figure 2b.

4.3 R2D18 FC ENC - LSTM

Xu et al. [20] notes that during temporal processing, fluctuations in frame pre-
dictions within a video clip can occur. To maintain consistent class predictions
across frames, it is necessary to implement temporal class consistency. This is
achieved by applying an additional Cross-Entropy loss, which incorporates the
average of all FC embeddings. The details of this architecture is described in
Figure 2c.
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Fig. 2: The proposed baseline methods of the Multiple Frames based FAS
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The image encoder generates two outputs: Firstly, stack embeddings of length
embed_dim, which are subsequently used for LSTM processing. Secondly, a
stack FC tensor of length 2, which is employed in computing the temporal con-
sistency loss by averaging the mentioned tensors in equation 2. All the loss
functions employed in this network are detailed in equation 3.

Lconsistency = −1

b

n∑
i=0

log(pmeanyi) (2)

L = Lconsistency + Lcls (3)

During inference, the embedding stacking process branch is utilized, which
passes through the LSTM network. Finally, the FC layer is activated with the
softmax function to produce the live/spoof value.

4.4 R2D18 FC ENC - NO -LSTM

This network assesses the influence of temporal effects on the generalization
capabilities of face antispoofing methods. It employs a temporal consistency loss
function, which incorporates the Cross-Entropy loss as detailed in equation 4. All
loss function used in this network are detailed in equation 5. The image encoder
used is ResNet 18. The details of this architecture is described in Figure 2d

Lconsistency = −1

b

n∑
i=0

log(pmeanyi) (4)

L = Lconsistency (5)

4.5 R2D18 - NO - LSTM - Optical Flow

Optical flow can only be accomplished when multiple frames are used as input.
Currently, there are no methods that employ optical flow for the DG approach
in face antispoofing. Based on previous work suggesting that incorporating ad-
ditional tasks could enhance model generalization, this study aims to evaluate
the impact of this additional task. The optical flow in this context utilizes a
pretrained model from RAFT [15].

Figure 2e illustrates the specifics of the proposed network. The image en-
coder will feature two branches, with the FC stacking process dedicated to the
temporal class consistency loss describe in equation 6. The generated optical
flow is upscaled to 256 and subsequently trained using MSE loss to learn the
constructed optical flow, it describe in equation 7. All training loss is describe
in equation 8.

Lconsistency = −1

b

n∑
i=0

log(pmeanyi) (6)

Lflow = (gtflow − yflow)
2 (7)

L = Lconsistency + Lflow (8)
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4.6 R2D18 - SSDG

Leveraging the SSDG framework [7], which employs asymmetric triplet min-
ing to bring live embeddings closer together while differentiating spoof embed-
dings based on their source domain, alongside single-sided adversarial learning
to enhance discrimination of the live domain. Both of these functions were im-
plemented using asymmetric triplet loss and adversarial loss. The GRL is set
the same with the default formula, described in Chapter 2. The details of the
architecture is described in Figure 2f

To emphasize, the input divides each dataset into separate domains, each en-
compassing both authentic and counterfeit images. The image encoder employs
the same weights for both types of images. It generates two types of outputs:
stack embeddings with embed_dim dimensions and a stack FC tensor with 2
dimensions. Additionally, the stack embeddings are processed by averaging and
then supervised using two techniques: asymmetric triplet mining and unilateral
adversarial learning. Simultaneously, the average of the stack FC embeddings is
calculated and monitored using temporal class consistency loss via Cross Entropy
loss. All the loss functions used are describe in equation 9.

LSSDG = LCls + λ1LAda + λ2LAsTrip (9)

4.7 R2D18 - DSDG

This network is still based on SSDG, however there are additional loss functions
used called multi-scale domain discriminator to allow the early layer embeddings
(layer 1 - layer 4) to be able to distinguish the domain. Domain here means the
source of dataset, in the intertest evaluation, there are 3 domains. In order to
learn these domain CE loss is employeed. The GRL is set the same with the de-
fault formula, described in Chapter 2. The details of the architecture is described
in Figure 2g. This network is setup due to our hypothesis that by utilizing the
multiple frames in earlier layer might be able to boost the generalization of the
model. All the loss functions used are describe in equation 10.

LSSDG = LCls + λ1LAda + λ2LAsTrip + λ3LAdalayer1
+ λ3LAdalayer2

+ λ3LAdalayer3
+ λ3LAdalayer4

(10)

5 Experiments

The training process utilizes the PyTorch library as the primary Deep Learn-
ing framework. Training and evaluation are conducted on a three-GPU setup,
consisting of a single RTX 4090 and two RTX 3090 GPUs. Certain experiments
with higher frame numbers demanded more VRAM for computation. However,
some experiments were still manageable on a single GPU during the training
phase.

5.1 Experiments Setup

Datasets and Protocols. As for the experiment, the aim for this work is evalu-
ating the Generalization capability through the Domain Generalization approach
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where the approach is intra-test protocol. The ’leave-one-domain-out’ approach
in the intertest serves as a conventional DG assessment in FAS, designed to test
the trained model on an unfamiliar domain/dataset. Four datasets are typically
employed, including OCIM.

Implementation Details. Two types of tests were conducted in this study:
intra-test and inter-test. The study implements seven multi-frame-based meth-
ods as detailed in Section 4, along with one spatial method employing ResNet2D
18 for comparative purposes. Various parameters such as num_segments = {2,
5, 10, 20}, frames_per_segment = {1, 2}, optimizer = {AdamW,SGD}, learn-
ing_rate = {1e−4, 1e−3, 1e−2}, and the length of embeddings in image encoder =
{256, 512, 1024} and the last layer in LSTM before FC layer has embeddings vari-
ations of {64, 128, 512} were adjusted to determine the optimal configurations for
these methods. A single-frame level, labeled as "basic" in the experiment name,
is a frequently used single-frame level method that employs Resnet18 with CE
loss, adhering to the same evaluation protocol as outlined in [7]. This approach
was included in the experiments to compare single-frame and multiple-frame
methods. All models underwent training for 40 epochs, after which the HTER
and AUC metrics were evaluated to identify the best model for each training
process.

Evaluation Details. The frames analyzed in this work are selected at the
video level. The number of frames utilized in the evaluation matches the quantity
used during training, following an identical sampling protocol. When assessing
the influence of the number of frames through hyperparameter tuning, the num-
ber of videos evaluated remains consistent to ensure fair comparisons, despite
variations in the number of frames in the same training protocol.

Results. The findings are presented in two training configurations: Intra-
test and Inter-test. The Intra-test results are shown in Table 1. Similarly, the
Inter-test results are illustrated in Table 2. Through all the baselines performed
in temporal configurations, the R2D18 is having the worst evaluation metrics,
these reflected in all inter and intratest protocols. Meanwhile the R3D18 perform
almost 2x times better in comparison with R2D18 for the intratest and intertest
protocols. However, simply adopting the multi-frame approach does not ensure
optimal outcomes. The used of CE loss at the end of LSTM unit shows an
inferior performance. One of the possible reason is that, there is a need for
a supervised loss before the stacking embedding further process through the
LSTM unit. This underscores the findings of Xu et al. [20], which indicated that
multiple frames experience prediction inconsistencies between video clip frames.
Introducing a Temporal consistency framework using CE loss could potentially
boost the model’s performance.

Moreover, to integrate this temporal class consistency loss, it is applied by
stacking the fully connected embeddings output for each frame, supervised by
the CE loss. This approach is designed to mitigate inconsistency across frames
within the same video. For intratest, this configuration is under R2D_FC_ENC
and shows significant improvement compared to R2D, as well as a slight supe-
riority over R3D. For intertest, it also demonstrates improvement in almost all
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protocols, except for OMI to C, which shows a disparity of around 3.033% for
HTER. A notable performance is observed in ICM to O, making this config-
uration the best among all configurations tested in this study with HTER of
16.819%. The use of temporal consistency loss is crucial in the utilization of
temporal frames at least with the network with the basic configurations such as
R2D.

This also piques our interest: if the temporal consistency loss is so crucial,
it might be feasible to eliminate the LSTM branch with the CE. This setup is
detailed under R2D18_NO_LSTM in Figure 2d. During the intratest phase,
the results reveal a slight performance degradation on the Oulu test, with a
disparity of 0.06% in HTER performance. However, in intertest protocols, this
configuration outperforms with an overall average HTER of 20.099%, compared
to 21.732% for R2D_FC_ENC.

Furthermore, the intratest results demonstrate excellent performance, as
most of the proposed methods already achieve an HTER of 0% and an AUC
of 100% in the CIM protocol. For the O protocols, the results show an HTER
of <1% and an AUC > 99%, indicating that intratests in multiple frame pro-
tocols are no longer challenging. Thus, for subsequent experiments, no intratest
protocols will be used for the remaining proposed network configurations.

As all the basic foundational model has done in the earlier experiments above,
this work also would like to utilize the auxiliary network with the utilization of
optical flow. As in the single frame, it has the disadvantage of utilizing this as
optical flow, due to the needs of multiple frames acquired in order to gener-
ate the optical flow. Therefore, this work would like create a baseline of using
optical flow combined with R2D_NO_LSTM with experiment name so called
R2D_NO_LSTM_OPTFLOW described in Figure 2e. Notably, in the OCI to
M scenario, this method achieves the second-best performance with an HTER
of 7.835%, trailing the best performance by 0.338, which is held by R2D18 -
FC ENC - NO LSTM. Similarly, in ICM to O, it also secures the second-best
position with an HTER of 17.529%, lagging behind the top performance by
0.709, achieved by R2D18 - FC ENC. However, in the OMI to C and OCM to I
cases, this method ranks second to last with HTERs of 33.438% and 29.045%,
respectively.

The additional task of optical flow can only be utilized with the multiple
frames approach to produce the optical flow map. The only prior work identified
using the implementation of optical flow is by Chang et al. [3]. However, their
ablation study lacks detailed information on the evaluation performed and the
architecture used. The only known details are that they used 3DCNN + optical
flow and evaluated solely on OCM to I, achieving 92.28% in AUC. In the current
work depicted in Table 2, the best HTER for OCM to I using optical flow is
29.045% and the AUC is 68.408%. There remains a significant performance gap
that this work cannot bridge.

In single frame approach, the used of Metric Learning where in the earlier
adopter is SSDG [7]. This experiments also would like to emphasize whether this
method if its bring to temporal frame will benefit. The SSDG is selected to inte-
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Table 1: Intratest Protocols

exp name O C I M
HTER (%) AUC (%) HTER (%) AUC (%) HTER (%) AUC (%) HTER (%) AUC (%)

BASIC 3.576 99.529 3.336 99.669 0.563 99.973 6.250 98.411
R3D 0.952 99.873 0 100 0 100 0 100
R2D 8.680 97.130 1.659 99.401 9.305 96.863 4.610 97.752
R2D_FC_ENC 0.85 99.93 0 100 0 100 0 100
R2D_NO_LSTM 0.91 99.92 0 100 0 100 0 100

Table 2: Intertest Protocols

exp name O&C&I to M O&M&I to C O&C&M to I I&C&M to O
HTER (%) AUC (%) HTER (%) AUC (%) HTER (%) AUC (%) HTER (%) AUC (%)

BASIC 23.542 83.453 31.603 72.809 23.875 79.794 22.083 84.286
R3D 14.649 92.950 28.512 70.593 26.481 71.936 27.245 77.176
R2D 29.298 70.217 42.812 56.716 41.342 57.069 33.870 72.055
R2D_FC_ENC 14.304 90.907 31.545 74.196 24.260 74.411 16.819 89.551
R2D_NO_LSTM 7.497 96.654 26.262 70.011 25.787 72.030 20.850 86.672
R2D_NO_LSTM_OPTFLOW 7.835 96.659 33.438 61.418 29.045 68.408 17.529 88.489
R2D_SSDG 8.028 96.442 21.818 84.877 10.744 95.344 20.965 85.184
R2D_DSDG_ADVALL_EMB 11.904 94.474 32.456 68.788 28.347 74.908 21.042 83.904

grate to our baseline due to its seperation in domain label only using a different
dataset, denoted with the experiment name R2D_SSDG. The SSDG approach
with a single frame significantly boosts the model’s generalization performance
across all evaluations. However, directly applying SSDG with multiple frames
fails to achieve the same level of significant performance as the single frame
usage. It is important to note that the implementation of R2D_SSDG also in-
corporates temporal class consistency loss, making this method comparable to
R2D_FC_ENC and R2D_NO_LSTM. However, Table 2 indicates that OCI
to M falls short of R2D_FC_ENC by a margin of 0.783%. Additionally, ICM
to I also lags behind both R2D_FC_ENC and R2D_NO_LSTM by 4.145%
and 0.115%, respectively. Although the R2D_SSDG has demonstrated the best
overall performance to date, the HTER metrics for 2 protocols still surpass 20%.

As we start from the hypothesis about the utilization of multi scale do-
main discriminator applied to the R2D_SSDG, within the experiments under
R2D_DSDG. The findings indicate that utilizing an earlier layer for the do-
main discriminator, even with multiple frames, hinders the network’s learning
process. One of the outcomes demonstrates a tight performance between SSDG
and DSDG on ICM to O with HTER of 21.042% loose to SSDG with HTER of
20.965. However, in other inter-test evaluations like OCI to M, it results in an
HTER of 11.904%, with a gap of 4.407% from the best. Additionally, for OMI
to C and OCM to I, the HTERs are 32.456% and 28.347%, respectively, with
both evaluations showing a substantial performance gap of over 10% in HTER.

This study indicates that further examination is required to understand how
the embeddings of images react to the proposed loss function and the aggregation
method. In this work, the mean of all embeddings from frames extracted from
the same video is used.
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5.2 The impact of total frames used during the training

All experiments were conducted extensively on both intratest and intertest.
all experiments were also tested with various values of num_segments and
frames_per_segment along with the other hyper-parameters mentioned in im-
plementation details section. The results from both intertest and intratest did
not reveal any discernible pattern, suggesting that the number of frames is merely
a hyperparameter that may lead to different performance outcomes in various
evaluation tests. Through all experiments conducted, do not have a direct cor-
relation with the generalization of the FAS model.

Nevertheless, the quantity of frames contributes to supplementary tasks like
producing a reliable depth, as noted in the previous work [18], in contrast to
the single frame approach. Typically, an additional task is represented by a new
branch in the network, which in this study employs the optical flow task. Prior
research has demonstrated that incorporating supplementary tasks can enhance
the model’s generalization.

5.3 The computed Optical Flow

The quantity of frames utilized to produce the optical flow with the RAFT
pretrained model [15] significantly affects the quality of the ground truth. For
better view, the generated Optical flow is taken from the smallest number of
videos from MSU data shows in Figure 3 display snippets of the generated optical
flow from the training data for each dataset. Increasing the number of frames
used to generate the optical flow results in a more detailed representation of
movement in the optical flow map. Nevertheless, the optical flow results are
less promising when compared to SSDG and DSDG. The qualitative distinction
between live and spoof images is unclear, indicating that the generated optical
flow maps exhibit a blend of live and spoof characteristics within each label.

(a) Live MSU - total
frames used 10

(b) Live MSU - total
frames used 20

(c) Spoof MSU - total
frames used 10

(d) Spoof MSU - total
frames used 20

Fig. 3: Optical flow generated for Train dataset - MSU

5.4 Visualization of the best Intertest Protocols

This qualitative approach centers on inter-test evaluation, which is the primary
focus of this study. The T-SNE method is employed in this research. This tech-
nique, commonly used in prior studies, is designed to visualize high-dimensional
data. In this study, the T-SNE was performed using the built-in function from
the Scikit Learn library.
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(a) best OCI to M :
R2D_NO_LSTM

(b) best OMI to C :
R2D_SSDG

(c) Best OCM to I :
R2D_SSDG

(d) Best ICM to O :
R2D_FC_ENC

Fig. 4: TSNE of the best HTER evaluation metric in overall intertest protocols in
correlation with the best results in Table 2

Each point in the embedding space represents a video, with the extracted
frames used during evaluation being consistent with the training configuration.
All extracted frames were processed using the mean operator. The mean embed-
dings from all extracted frames within a video are used as input to the TSNE.
The layer chosen to output these embeddings is located one layer before the final
fully-connected layer. All visualizations below use the optimal training configu-
rations from each model to show how the trained model extracted features from
the test dataset. The visualization includes two labels: 0 for spoof and 1 for real
instance.

6 Conclusion

In summary, this work seeks to explore the advantages of employing multiple
frames over a single frame and to enhance the generalization of FAS models
using a multiple frame approach. These investigations involved establishing a
baseline due to the absence of existing baseline in the literature, as well as
examining the application of Temporal class consistency, Metric Learning with
SSDG loss, and SSDG with a multi-scale domain discriminator.

This study is significant due to its potential to enhance the DG approach
employing a multiple frame strategy, focusing on the effects of metric learning
and supplementary tasks to boost model generalization. To accomplish this, this
work adopts a metric learning method that has not been thoroughly investigated
in the context of multiple frames, specifically in terms of how to combine all the
embedding from the relevant frames within a video clip.

The anticipated results encompass the methodology for effectively using mul-
tiple frames, which will enhance our understanding of the influence of temporal
frames on improving the generalization of the FAS model. In summary, this pro-
posed research has the potential to significantly advance the understanding of
face antispoofing, and it is convinced that it is crucial to undertake this study
to tackle the urgent challenges in Domain Generalization for face antispoofing.
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